الجامعة :جامعة المنصورة |
الكلية :كلية التربية |
القسم :الرياضيات |
|
1- بيانات المقرر :- |
| الرمز الكودى: | 08 | اسم المقرر: | تحليل | الفرقة: | رابعة رياضيات | عنوان البرنامج: | - بكالوريوس العلوم والتربية تعليم أساسي رياضيات
| التخصص: | | عدد الساعات: | نظري: | 4 | فصل: | 4 | عملى: | |
|
2- أهداف المقرر :- |
| - This course is designed to introduce and develop skill in the mathematics needed to guarantee a solid foundation for the applications of calculus to follow in later courses. The course also aims to provide some basic tools and concepts for mathematics at the first year, with particular emphasis on introducing rigorous mathematical treatments of some fundamental topics in mathematics
|
3- نواتج التعلم المستهدفة للمقرر :- |
| |
4- محتويات المقرر :- |
| م | الموضوع | الأسبوع |
---|
1 | Leibniz rule | | 2 | Further functions and its derivatives : Inverse functions; the log function ln; the exponential function exp and ax; the inverse trigonometric functions sin-1, cos-1, tan-1; the hyperbolic functions sinh, cosh, tanh and their inverses sinh-1, cosh-1, tanh-1; complex exponentials | | 3 | Applications of Calculus | | 4 | Functions ~ Inequalities; domain and co-domain of a function; types of function; graph of a function; continuity; curve sketching; the function sin, cos, tan | | 5 | Limits of functions (epsilon-delta definition of limit; negation). | | 6 | Differentiation ~ Basic ideas; tangent to a curve; the product and quotient rule; the chain rule for differentiating f(g(x)); the idea of implicit functions, implicit differentiation; use of derivatives in curve sketching; higher derivatives; maxima and minima of functions; conic sections, Leibniz rule. | | 7 | Intermediate Value and Rolle Theorems | |
|
|
5- أساليب التعليم والتعلم :- |
| م | الاسلوب |
---|
| Lectures supported by problem sheets and weekly small-group tutorials |
|
|
6- أساليب التعليم والتعلم للطلاب ذوى القدرات المحدودة :- |
| لا توجد بيانات. |
|
7- تقويم الطلاب :- |
| أ- التوقيت |
| م | الطريقة | الأسبوع |
---|
1 | Oral Exam | 15 | 2 | Final_Term Examination | 16 |
|
| ب- توزيع الدرجات |
| م | الطريقة | الدرجة |
---|
1 | امتحان نصف الترم | | 2 | امتحان آخر الترم | 90 | 3 | الامتحان الشفوى | | 4 | الامتحان العملى | | 5 | أعمال الترم | 10 | 6 | طرق أخرى للتقييم | | المجموع | 100% |
|
|
8- قائمة الكتب الدراسية والمراجع |
| م | العنصر | النوع |
---|
1 | . C. Burkill, A First Course in Mathematical Analysis, Cambridge University Press is strongly recommended | | 2 | Howard Anton, Calculus, John Wily & Sons, INC 1999 | | 3 | Jordan, D.W. & Smith, P. Mathematical Techniques: An introduction for the engineering, physical, and mathematical sciences (3rd edition), Oxford University Press, Oxford, 2002 | |
|
|
9- مصفوفة المعارف والمهارات المستهدفة من المقرر الدراسي |
| م | المحتوى | أسبوع الدراسة |
---|
| Leibniz rule | | | Further functions and its derivatives : Inverse functions; the log function ln; the exponential function exp and ax; the inverse trigonometric functions sin-1, cos-1, tan-1; the hyperbolic functions sinh, cosh, tanh and their inverses sinh-1, cosh-1, tanh-1; complex exponentials | | | Applications of Calculus | | | Functions ~ Inequalities; domain and co-domain of a function; types of function; graph of a function; continuity; curve sketching; the function sin, cos, tan | | | Limits of functions (epsilon-delta definition of limit; negation). | | | Differentiation ~ Basic ideas; tangent to a curve; the product and quotient rule; the chain rule for differentiating f(g(x)); the idea of implicit functions, implicit differentiation; use of derivatives in curve sketching; higher derivatives; maxima and minima of functions; conic sections, Leibniz rule. | | | Intermediate Value and Rolle Theorems | |
|
|
اساتذة المادة: - |
| - محمد سمير محمود قاسم
|
رئيس مجلس القسم العلمى: - |
| محمد كمال عبد السلام عوف الكسار |