كلية العلوم

نموذج رقم(12)

توصيف مقرر دراسي : الرياضيات الحيوية

2016 - 2017

 
الفارابى لإدارة جودة التعليم والتعلم - 4/12/2024
الجامعة :جامعة المنصورة
الكلية :كلية العلوم
القسم :الفيزياء
1- بيانات المقرر :-
الرمز الكودى: Phys621
اسم المقرر: الرياضيات الحيوية
الفرقة: درجة الماجستير فى العلوم / الفيزياء / الفيزياء النظرية
عنوان البرنامج:
  • جميع البرامج الاكاديمية
  • الماجستير فى الفيزياء النظرية
التخصص: رئيسياً
عدد الساعات: نظري: 2فصل: 1عملى:
2- أهداف المقرر :-
  1. to introduce Mathematical Biology
3- نواتج التعلم المستهدفة للمقرر :-
4- محتويات المقرر :-
مالموضوعالأسبوع
1Multi-Species Waves and Practical Applications 1 1.1 Intuitive Expectations . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Waves of Pursuit and Evasion in Predator–Prey Systems . . . . . . . 5 1.3 Competition Model for the Spatial Spread of the Grey Squirrel in Britain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4 Spread of Genetically Engineered Organisms . . . . . . . . . . . . . 18 1.5 Travelling Fronts in the Belousov–Zhabotinskii Reaction . . . . . . . 35 1.6 Waves in Excitable Media . . . . . . . . . . . . . . . . . . . . . . . 41 1.7 Travelling Wave Trains in Reaction Diffusion Systems with Oscillatory Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 1.8 Spiral Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 1.9 Spiral Wave Solutions of λ–ω Reaction Diffusion Systems . . . . . . 61 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2. Spatial Pattern Formation with Reaction Diffusion Systems 71 2.1 Role of Pattern in Biology . . . . . . . . . . . . . . . . . . . . . . . 71 2.2 Reaction Diffusion (Turing) Mechanisms . . . . . . . . . . . . . . . 75 2.3 General Conditions for Diffusion-Driven Instability: Linear Stability Analysis and Evolution of Spatial Pattern . . . . . . . 82 2.4 Detailed Analysis of Pattern Initiation in a Reaction Diffusion Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 2.5 Dispersion Relation, Turing Space, Scale and Geometry Effects in Pattern Formation Models . . . . . . . . . . . . . . . . . . . . . . 103 2.6 Mode Selection and the Dispersion Relation . . . . . . . . . . . . . . 113 2.7 Pattern Generation with Single-Species Models: Spatial Heterogeneity with the Spruce Budworm Model . . . . . . . . . . . . 120 xvi Contents, Volume II 2.8 Spatial Patterns in Scalar Population Interaction Diffusion Equations with Convection: Ecological Control Strategies . . . . . . . 125 2.9 Nonexistence of Spatial Patterns in Reaction Diffusion Systems: General and Particular Results . . . . . . . . . . . . . . . . . . . . . 130 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 3. Animal Coat Patterns and Other Practical Applications of Reaction Diffusion Mechanisms 141 3.1 Mammalian Coat Patterns—‘How the Leopard Got Its Spots’ . . . . . 142 3.2 Teratologies: Examples of Animal Coat Pattern Abnormalities . . . . 156 3.3 A Pattern Formation Mechanism for Butterfly Wing Patterns . . . . . 161 3.4 Modelling Hair Patterns in a Whorl in Acetabularia . . . . . . . . . . 180 4. Pattern Formation on Growing Domains: Alligators and Snakes 192 4.1 Stripe Pattern Formation in the Alligator: Experiments . . . . . . . . 193 4.2 Modelling Concepts: Determining the Time of Stripe Formation . . . 196 4.3 Stripes and Shadow Stripes on the Alligator . . . . . . . . . . . . . . 200 4.4 Spatial Patterning of Teeth Primordia in the Alligator: Background and Relevance . . . . . . . . . . . . . . . . . . . . . . . 205 4.5 Biology of Tooth Initiation . . . . . . . . . . . . . . . . . . . . . . . 207 4.6 Modelling Tooth Primordium Initiation: Background . . . . . . . . . 213 4.7 Model Mechanism for Alligator Teeth Patterning . . . . . . . . . . . 215 4.8 Results and Comparison with Experimental Data . . . . . . . . . . . 224 4.9 Prediction Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 228 4.10 Concluding Remarks on Alligator Tooth Spatial Patterning . . . . . . 232 4.11 Pigmentation Pattern Formation on Snakes . . . . . . . . . . . . . . . 234 4.12 Cell-Chemotaxis Model Mechanism . . . . . . . . . . . . . . . . . . 238 4.13 Simple and Complex Snake Pattern Elements . . . . . . . . . . . . . 241 4.14 Propagating Pattern Generation with the Cell-Chemotaxis System . . 248 5. Bacterial Patterns and Chemotaxis 253 5.1 Background and Experimental Results . . . . . . . . . . . . . . . . . 253 5.2 Model Mechanism for E. coli in the Semi-Solid Experiments . . . . . 260 5.3 Liquid Phase Model: Intuitive Analysis of Pattern Formation . . . . . 267 5.4 Interpretation of the Analytical Results and Numerical Solutions . . . 274 5.5 Semi-Solid Phase Model Mechanism for S. typhimurium . . . . . . . 279 5.6 Linear Analysis of the Basic Semi-Solid Model . . . . . . . . . . . . 281 5.7 Brief Outline and Results of the Nonlinear Analysis . . . . . . . . . . 287 5.8 Simulation Results, Parameter Spaces and Basic Patterns . . . . . . . 292 5.9 Numerical Results with Initial Conditions from the Experiments . . . 297 5.10 Swarm Ring Patterns with the Semi-Solid Phase Model Mechanism . 299 5.11 Branching Patterns in Bacillus subtilis . . . . . . . . . . . . . . . . . 306 6. Mechanical Theory for Generating Pattern and Form in Development 311 6.1 Introduction, Motivation and Background Biology . . . . . . . . . . . 311 Contents, Volume II xvii 6.2 Mechanical Model for Mesenchymal Morphogenesis . . . . . . . . . 319 6.3 Linear Analysis, Dispersion Relation and Pattern Formation Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 6.4 Simple Mechanical Models Which Generate Spatial Patterns with Complex Dispersion Relations . . . . . . . . . . . . . . . . . . . . . 334 6.5 Periodic Patterns of Feather Germs . . . . . . . . . . . . . . . . . . . 345 6.6 Cartilage Condensations in Limb Morphogenesis and Morphogenetic Rules . . . . . . . . . . . . . . . . . . . . . . . . 350 6.7 Embryonic Fingerprint Formation . . . . . . . . . . . . . . . . . . . 358 6.8 Mechanochemical Model for the Epidermis . . . . . . . . . . . . . . 367 6.9 Formation of Microvilli . . . . . . . . . . . . . . . . . . . . . . . . . 374 6.10 Complex Pattern Formation and Tissue Interaction Models . . . . . . 381 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 7. Evolution, Morphogenetic Laws, Developmental Constraints and Teratologies 396 7.1 Evolution and Morphogenesis . . . . . . . . . . . . . . . . . . . . . 396 7.2 Evolution and Morphogenetic Rules in Cartilage Formation in the Vertebrate Limb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402 7.3 Teratologies (Monsters) . . . . . . . . . . . . . . . . . . . . . . . . . 407 7.4 Developmental Constraints, Morphogenetic Rules and the Consequences for Evolution . . . . . . . . . . . . . . . . . . . . 411 8. A Mechanical Theory of Vascular Network Formation 416 8.1 Biological Background and Motivation . . . . . . . . . . . . . . . . . 416 8.2 Cell–Extracellular Matrix Interactions for Vasculogenesis . . . . . . . 417 8.3 Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 8.4 Analysis of the Model Equations . . . . . . . . . . . . . . . . . . . . 427 8.5 Network Patterns: Numerical Simulations and Conclusions . . . . . . 433 9. Epidermal Wound Healing 441 9.1 Brief History of Wound Healing . . . . . . . . . . . . . . . . . . . . 441 9.2 Biological Background: Epidermal Wounds . . . . . . . . . . . . . . 444 9.3 Model for Epidermal Wound Healing . . . . . . . . . . . . . . . . . 447 9.4 Nondimensional Form, Linear Stability and Parameter Values . . . . . 450 9.5 Numerical Solution for the Epidermal Wound Repair Model . . . . . 451 9.6 Travelling Wave Solutions for the Epidermal Model . . . . . . . . . . 454 9.7 Clinical Implications of the Epidermal Wound Model . . . . . . . . . 461 9.8 Mechanisms of Epidermal Repair in Embryos . . . . . . . . . . . . . 468 9.9 Actin Alignment in Embryonic Wounds: A Mechanical Model . . . . 471 9.10 Mechanical Model with Stress Alignment of the Actin Filaments in Two Dimensions . . . . . . . . . . . . . . . . . . . . . 482 10. Dermal Wound Healing 491 10.1 Background and Motivation—G1-12

5- أساليب التعليم والتعلم :-
مالاسلوب
Teaching and Learning Methods 5.1 - Lectures using board. 5.2 - Discussion sessions 5.3 - Problem classes 5.4 - class activity

6- أساليب التعليم والتعلم للطلاب ذوى القدرات المحدودة :-
  1. 1. Giving them more chance through the office hours to raise their competencies 2. class activity

7- تقويم الطلاب :-
أ- التوقيت
مالطريقةالأسبوع
1final exam12
2med term exam6
3oral exam12
4report11
ب- توزيع الدرجات
مالطريقةالدرجة
1final exam70
2med term exam10
3oral exam10
4oral exam10
المجموع100%

8- قائمة الكتب الدراسية والمراجع
مالعنصرالنوع
1mathematical biologyكتب ملزمة

9- مصفوفة المعارف والمهارات المستهدفة من المقرر الدراسي
مالمحتوىأسبوع الدراسة
Multi-Species Waves and Practical Applications 1 1.1 Intuitive Expectations . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Waves of Pursuit and Evasion in Predator–Prey Systems . . . . . . . 5 1.3 Competition Model for the Spatial Spread of the Grey Squirrel in Britain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4 Spread of Genetically Engineered Organisms . . . . . . . . . . . . . 18 1.5 Travelling Fronts in the Belousov–Zhabotinskii Reaction . . . . . . . 35 1.6 Waves in Excitable Media . . . . . . . . . . . . . . . . . . . . . . . 41 1.7 Travelling Wave Trains in Reaction Diffusion Systems with Oscillatory Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 1.8 Spiral Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 1.9 Spiral Wave Solutions of λ–ω Reaction Diffusion Systems . . . . . . 61 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2. Spatial Pattern Formation with Reaction Diffusion Systems 71 2.1 Role of Pattern in Biology . . . . . . . . . . . . . . . . . . . . . . . 71 2.2 Reaction Diffusion (Turing) Mechanisms . . . . . . . . . . . . . . . 75 2.3 General Conditions for Diffusion-Driven Instability: Linear Stability Analysis and Evolution of Spatial Pattern . . . . . . . 82 2.4 Detailed Analysis of Pattern Initiation in a Reaction Diffusion Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 2.5 Dispersion Relation, Turing Space, Scale and Geometry Effects in Pattern Formation Models . . . . . . . . . . . . . . . . . . . . . . 103 2.6 Mode Selection and the Dispersion Relation . . . . . . . . . . . . . . 113 2.7 Pattern Generation with Single-Species Models: Spatial Heterogeneity with the Spruce Budworm Model . . . . . . . . . . . . 120 xvi Contents, Volume II 2.8 Spatial Patterns in Scalar Population Interaction Diffusion Equations with Convection: Ecological Control Strategies . . . . . . . 125 2.9 Nonexistence of Spatial Patterns in Reaction Diffusion Systems: General and Particular Results . . . . . . . . . . . . . . . . . . . . . 130 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 3. Animal Coat Patterns and Other Practical Applications of Reaction Diffusion Mechanisms 141 3.1 Mammalian Coat Patterns—‘How the Leopard Got Its Spots’ . . . . . 142 3.2 Teratologies: Examples of Animal Coat Pattern Abnormalities . . . . 156 3.3 A Pattern Formation Mechanism for Butterfly Wing Patterns . . . . . 161 3.4 Modelling Hair Patterns in a Whorl in Acetabularia . . . . . . . . . . 180 4. Pattern Formation on Growing Domains: Alligators and Snakes 192 4.1 Stripe Pattern Formation in the Alligator: Experiments . . . . . . . . 193 4.2 Modelling Concepts: Determining the Time of Stripe Formation . . . 196 4.3 Stripes and Shadow Stripes on the Alligator . . . . . . . . . . . . . . 200 4.4 Spatial Patterning of Teeth Primordia in the Alligator: Background and Relevance . . . . . . . . . . . . . . . . . . . . . . . 205 4.5 Biology of Tooth Initiation . . . . . . . . . . . . . . . . . . . . . . . 207 4.6 Modelling Tooth Primordium Initiation: Background . . . . . . . . . 213 4.7 Model Mechanism for Alligator Teeth Patterning . . . . . . . . . . . 215 4.8 Results and Comparison with Experimental Data . . . . . . . . . . . 224 4.9 Prediction Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 228 4.10 Concluding Remarks on Alligator Tooth Spatial Patterning . . . . . . 232 4.11 Pigmentation Pattern Formation on Snakes . . . . . . . . . . . . . . . 234 4.12 Cell-Chemotaxis Model Mechanism . . . . . . . . . . . . . . . . . . 238 4.13 Simple and Complex Snake Pattern Elements . . . . . . . . . . . . . 241 4.14 Propagating Pattern Generation with the Cell-Chemotaxis System . . 248 5. Bacterial Patterns and Chemotaxis 253 5.1 Background and Experimental Results . . . . . . . . . . . . . . . . . 253 5.2 Model Mechanism for E. coli in the Semi-Solid Experiments . . . . . 260 5.3 Liquid Phase Model: Intuitive Analysis of Pattern Formation . . . . . 267 5.4 Interpretation of the Analytical Results and Numerical Solutions . . . 274 5.5 Semi-Solid Phase Model Mechanism for S. typhimurium . . . . . . . 279 5.6 Linear Analysis of the Basic Semi-Solid Model . . . . . . . . . . . . 281 5.7 Brief Outline and Results of the Nonlinear Analysis . . . . . . . . . . 287 5.8 Simulation Results, Parameter Spaces and Basic Patterns . . . . . . . 292 5.9 Numerical Results with Initial Conditions from the Experiments . . . 297 5.10 Swarm Ring Patterns with the Semi-Solid Phase Model Mechanism . 299 5.11 Branching Patterns in Bacillus subtilis . . . . . . . . . . . . . . . . . 306 6. Mechanical Theory for Generating Pattern and Form in Development 311 6.1 Introduction, Motivation and Background Biology . . . . . . . . . . . 311 Contents, Volume II xvii 6.2 Mechanical Model for Mesenchymal Morphogenesis . . . . . . . . . 319 6.3 Linear Analysis, Dispersion Relation and Pattern Formation Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 6.4 Simple Mechanical Models Which Generate Spatial Patterns with Complex Dispersion Relations . . . . . . . . . . . . . . . . . . . . . 334 6.5 Periodic Patterns of Feather Germs . . . . . . . . . . . . . . . . . . . 345 6.6 Cartilage Condensations in Limb Morphogenesis and Morphogenetic Rules . . . . . . . . . . . . . . . . . . . . . . . . 350 6.7 Embryonic Fingerprint Formation . . . . . . . . . . . . . . . . . . . 358 6.8 Mechanochemical Model for the Epidermis . . . . . . . . . . . . . . 367 6.9 Formation of Microvilli . . . . . . . . . . . . . . . . . . . . . . . . . 374 6.10 Complex Pattern Formation and Tissue Interaction Models . . . . . . 381 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 7. Evolution, Morphogenetic Laws, Developmental Constraints and Teratologies 396 7.1 Evolution and Morphogenesis . . . . . . . . . . . . . . . . . . . . . 396 7.2 Evolution and Morphogenetic Rules in Cartilage Formation in the Vertebrate Limb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402 7.3 Teratologies (Monsters) . . . . . . . . . . . . . . . . . . . . . . . . . 407 7.4 Developmental Constraints, Morphogenetic Rules and the Consequences for Evolution . . . . . . . . . . . . . . . . . . . . 411 8. A Mechanical Theory of Vascular Network Formation 416 8.1 Biological Background and Motivation . . . . . . . . . . . . . . . . . 416 8.2 Cell–Extracellular Matrix Interactions for Vasculogenesis . . . . . . . 417 8.3 Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 8.4 Analysis of the Model Equations . . . . . . . . . . . . . . . . . . . . 427 8.5 Network Patterns: Numerical Simulations and Conclusions . . . . . . 433 9. Epidermal Wound Healing 441 9.1 Brief History of Wound Healing . . . . . . . . . . . . . . . . . . . . 441 9.2 Biological Background: Epidermal Wounds . . . . . . . . . . . . . . 444 9.3 Model for Epidermal Wound Healing . . . . . . . . . . . . . . . . . 447 9.4 Nondimensional Form, Linear Stability and Parameter Values . . . . . 450 9.5 Numerical Solution for the Epidermal Wound Repair Model . . . . . 451 9.6 Travelling Wave Solutions for the Epidermal Model . . . . . . . . . . 454 9.7 Clinical Implications of the Epidermal Wound Model . . . . . . . . . 461 9.8 Mechanisms of Epidermal Repair in Embryos . . . . . . . . . . . . . 468 9.9 Actin Alignment in Embryonic Wounds: A Mechanical Model . . . . 471 9.10 Mechanical Model with Stress Alignment of the Actin Filaments in Two Dimensions . . . . . . . . . . . . . . . . . . . . . 482 10. Dermal Wound Healing 491 10.1 Background and Motivation—G1-12

اساتذة المادة: -
  1. السيد عبد العاطى حسن الوكيل
رئيس مجلس القسم العلمى: -
عادل محمد صادق عجور