الجامعة :جامعة المنصورة  | 
الكلية :كلية العلوم  | 
القسم :الرياضيات  | 
 | 
| 1- 1- بيانات المقرر :- | 
 | | الرمز الكودى:  | 11101 |  | اسم المقرر:  | تفاضل وتكامل (أ) |  | الفرقة:  | أولى رياضة وفيزياء |  | عنوان البرنامج:  |  |  | التخصص:  |   |  | عدد الساعات:  | نظري:  | 3 | فصل:  | 3 | عملى:  |  |  
  | 
| 2- 2- أهداف المقرر :- | 
 | -  This course is designed to introduce and develop skills in mathematics needed to guarantee a solid foundation for the applications of calculus to follow in later courses
 
  | 
| 3- 3- نواتج التعلم المستهدفة للمقرر :- | 
 |  | 
| 4- 4- محتويات المقرر :- | 
 | | م | الموضوع | الأسبوع | 
|---|
 | 1 | Functions ~ Inequalities; domain and co-domain of a function; types of function; graph of a function; continuity; curve sketching; the function sin, cos, tan |  |  | 2 | Limits of functions (epsilon-delta definition of limit; negation)-continuity.  |  |  | 3 | Differentiation ~ Basic ideas; tangent to a curve; the product and quotient rule; the chain rule for differentiating f(g(x)); the idea of implicit functions, implicit differentiation; use of derivatives in curve sketching; higher derivatives; maxima and minima of functions; conic sections, Leibniz rule. |  |  | 4 | Intermediate Theorem , Rolle Theorem and L’Hopitalle Rule for taking limits. |  |  | 5 |  Leibnitz Theorem . |  |  | 6 | Further functions and their derivatives : Inverse functions; the log function ln ; the exponential function exp and ax; the inverse trigonometric functions sin-1, cos-1, tan-1; the hyperbolic functions sinh, cosh, tanh and their inverses sinh-1, cosh-1, tanh-1; complex exponentials. |  |  | 7 | Applications  of Calculus |  |  
  | 
  | 
| 5- 5- أساليب التعليم والتعلم :- | 
 | | م | الاسلوب | 
|---|
  | 3 Hours lectures per week |   | 3 Hours tutorials per week |  
  | 
  | 
| 6- 6- أساليب التعليم والتعلم للطلاب ذوى القدرات المحدودة :- | 
 | - --
 
  | 
  | 
| 7- 7- تقويم الطلاب :- | 
 | - التوقيت | 
 | | م | الطريقة | الأسبوع | 
|---|
 | 1 | Oral Exam | 15 |  | 2 | Final_Term Examination  | 16 |  
  | 
 | - توزيع الدرجات | 
 | | م | الطريقة | الدرجة | 
|---|
 | 1 | امتحان نصف الترم | 0 |  | 2 | امتحان آخر الترم | 90 |  | 3 | الامتحان الشفوى | 10 |  | 4 | الامتحان العملى | 0 |  | 5 | أعمال الترم | 0 |  | 6 | طرق أخرى للتقييم | 0 |  | المجموع | 100% |  
  | 
  | 
| 8- 8- قائمة الكتب الدراسية والمراجع | 
 | | م | المراجع | النوع | 
|---|
 | 1 | Lecture notes prepared by academic staff members in the Department. |  |  | 2 |   Howard Anton, Calculus, John Wily & Sons, INC 1999 |  |  | 3 | Jordan, D.W. & Smith, P. Mathematical Techniques: An introduction for the engineering, physical, and mathematical sciences (3rd edition), Oxford University Press, Oxford, 2002 |  |  | 4 | http://www.math.scar.utoronto.ca/calculus/Redbook/, |  |  | 5 | http://www.uwm.edu/Dept/Math/Resources/Calculus/Key/ |  |  | 6 | http://math.ucalgary.ca/~ling/calculus/calculusnotes.htm |  |  | 7 | http://www.ugrad.math.ubc.ca/coursedoc/math101/notes/ |  |  | 8 |   G.B.Thomas and Ross L. Finny "Calculus and Analytic Geometry(9th edition)" ,addison Wesley,1995 . |  |  
  | 
  | 
| 9- 9- مصفوفة المعارف والمهارات المستهدفة من المقرر الدراسي | 
 | | م | المحتوى | أسبوع الدراسة | 
|---|
  | Functions ~ Inequalities; domain and co-domain of a function; types of function; graph of a function; continuity; curve sketching; the function sin, cos, tan |  |   | Limits of functions (epsilon-delta definition of limit; negation)-continuity.  |  |   | Differentiation ~ Basic ideas; tangent to a curve; the product and quotient rule; the chain rule for differentiating f(g(x)); the idea of implicit functions, implicit differentiation; use of derivatives in curve sketching; higher derivatives; maxima and minima of functions; conic sections, Leibniz rule. |  |   | Intermediate Theorem , Rolle Theorem and L’Hopitalle Rule for taking limits. |  |   |  Leibnitz Theorem . |  |   | Further functions and their derivatives : Inverse functions; the log function ln ; the exponential function exp and ax; the inverse trigonometric functions sin-1, cos-1, tan-1; the hyperbolic functions sinh, cosh, tanh and their inverses sinh-1, cosh-1, tanh-1; complex exponentials. |  |   | Applications  of Calculus |  |  
  | 
  | 
| اساتذة المادة:  - | 
 | - محمد سمير محمود قاسم
 
  | 
| رئيس مجلس القسم العلمى:  - | 
 | أحمد حبيب محمد نجيب البسيونى |