الجامعة :جامعة المنصورة |
الكلية :كلية العلوم |
القسم :الرياضيات |
|
1- بيانات المقرر :- |
| الرمز الكودى: | 15417 | اسم المقرر: | نظرية المعادلات التفاضلية الجزئية-معادلات تكاملية | الفرقة: | رابعة الإحصاء وعلوم الحاسب | عنوان البرنامج: | - Statistics & Computer science
| التخصص: | | عدد الساعات: | نظري: | 4 | فصل: | 2 | عملى: | |
|
2- أهداف المقرر :- |
| - This course introduces students to (i) analytical and numerical methods for solving partial differential equations (PDEs), (ii) concepts and methods of Vector calculus. It builds on the first year core applied mathematics courses to develop more advanced ideas in differential and integral calculus.
- This course will focus on the different methods for solving Integral equations of Fredholm and Volterra types •.
|
3- نواتج التعلم المستهدفة للمقرر :- |
| |
4- محتويات المقرر :- |
| م | الموضوع | الأسبوع |
---|
1 | Introducion to Partial differential equations – order –homogenous and non homogenous – degree-linear and nonlinear | | 2 | Heat equation, Wave equation and Laplace’s equation in both one and higher dimensions. | | 3 | Separation of Variables, boundry value problems, Fourier Series. | | 4 | Fourier and Laplace Transform techniques. | | 5 | Applications. | | 6 | Volterra Integral equations of the 2nd kinds. Resolvent kernel | | 7 | Using of Laplace transformation to solve the integral equation of convolution type | | 8 | Solution of integro-differential equations using Laplace transformations | | 9 | Volterra integral equations of the 1st kind and Volterra equations of the 1st and 2nd kinds. | | 10 | Euler Integrals | | 11 | Abel’s problem and its generalization | | 12 | Fredholm integral equations of the 2nd kind | | 13 | Methods of Fredholm determinants. | | 14 | Fredholm Iterated kernel- resolvent kernel and Degenerate kernels | | 15 | Approximate methods of solution and applications | |
|
|
5- أساليب التعليم والتعلم :- |
| م | الاسلوب |
---|
| 4 hours lectures each week and 2 hours tutorial |
|
|
6- أساليب التعليم والتعلم للطلاب ذوى القدرات المحدودة :- |
| لا توجد بيانات. |
|
7- تقويم الطلاب :- |
| أ- التوقيت |
| م | الطريقة | الأسبوع |
---|
1 | Oral Examination | 14 | 2 | Final_Term Examination | 15 |
|
| ب- توزيع الدرجات |
| م | الطريقة | الدرجة |
---|
1 | امتحان نصف الترم | 0 | 2 | امتحان آخر الترم | 90 | 3 | الامتحان الشفوى | 10 | 4 | الامتحان العملى | 0 | 5 | أعمال الترم | 0 | 6 | طرق أخرى للتقييم | 0 | المجموع | 100% |
|
|
8- قائمة الكتب الدراسية والمراجع |
| م | العنصر | النوع |
---|
1 | Lecture notes | | 2 | S. J. Farlow, Partial Differential Equations for Scientists and Engineers, Dover Publications 1993 | | 3 | R. Haberman, Elementary Appled Partial Differential Equations, 4th ed., 2004. | | 4 | 1-ABDUL J. JERRI , Introduction to integral equations with applications, 1999, JOHN WILEY & SONS INC | | 5 | Problems and Exercises in integral equations Mir Publ., Mosow | | 6 | R Courant and D Hilbert, Methods of Mathematical Physics, Vols. I and II, Interscience. | |
|
|
9- مصفوفة المعارف والمهارات المستهدفة من المقرر الدراسي |
| م | المحتوى | أسبوع الدراسة |
---|
| Introducion to Partial differential equations – order –homogenous and non homogenous – degree-linear and nonlinear | | | Heat equation, Wave equation and Laplace’s equation in both one and higher dimensions. | | | Separation of Variables, boundry value problems, Fourier Series. | | | Fourier and Laplace Transform techniques. | | | Applications. | | | Volterra Integral equations of the 2nd kinds. Resolvent kernel | | | Using of Laplace transformation to solve the integral equation of convolution type | | | Solution of integro-differential equations using Laplace transformations | | | Volterra integral equations of the 1st kind and Volterra equations of the 1st and 2nd kinds. | | | Euler Integrals | | | Abel’s problem and its generalization | | | Fredholm integral equations of the 2nd kind | | | Methods of Fredholm determinants. | | | Fredholm Iterated kernel- resolvent kernel and Degenerate kernels | | | Approximate methods of solution and applications | |
|
|
اساتذة المادة: - |
| - محمد نبيل مصطفى محمد علام
|
رئيس مجلس القسم العلمى: - |
| أحمد حبيب محمد نجيب البسيونى |