الجامعة :جامعة المنصورة |
الكلية :كلية العلوم |
القسم :الرياضيات |
|
1- بيانات المقرر :- |
| الرمز الكودى: | 11318 | اسم المقرر: | جبر مجرد (2) | الفرقة: | ثالثة رياضيات | عنوان البرنامج: | | التخصص: | | عدد الساعات: | نظري: | 4 | فصل: | 2 | عملى: | |
|
2- أهداف المقرر :- |
| - The programme unit aims to introduce quotient structures and their connection with homomorphisms in the context of rings and then again in the context of groups; present further important examples of groups and rings and develop some of their properties with particular emphasis on polynomial rings, factorisation in rings and group actions. As a prerequisite to the advande course of algebra .
|
3- نواتج التعلم المستهدفة للمقرر :- |
| |
4- محتويات المقرر :- |
| م | الموضوع | الأسبوع |
---|
1 | What is a ring and all essential kinds of rings | | 2 | Integral Domain and its properties | | 3 | Unites, primes and irreducibles elements | | 4 | Subrings and ideals. Prime and maximal | | 5 | Factor rings and homomorphisms theorems. | | 6 | extention of an integral domain to a field | | 7 | Euclidean domain and its properties | | 8 | Polynomials over a ring and oynomialsver a field | | 9 | Prime and irreducible pol | | 10 | Gauss theorem and Eisenstein’ criterion | | 11 | Field Splitting fields extensions, | | 12 | Finite fields and its properties. | | 13 | extensions | | 14 | Classification of extensions | |
|
|
5- أساليب التعليم والتعلم :- |
| م | الاسلوب |
---|
| Lecturer with exercise sheets and solution sheets | | Tutorials in groups | | Using Internet facilities |
|
|
6- أساليب التعليم والتعلم للطلاب ذوى القدرات المحدودة :- |
| - no
|
|
7- تقويم الطلاب :- |
| أ- التوقيت |
| م | الطريقة | الأسبوع |
---|
1 | Oral exam | 14 | 2 | Final exam | 16 |
|
| ب- توزيع الدرجات |
| م | الطريقة | الدرجة |
---|
1 | امتحان نصف الترم | 0 | 2 | امتحان آخر الترم | 90 | 3 | الامتحان الشفوى | 10 | 4 | الامتحان العملى | 0 | 5 | أعمال الترم | 0 | 6 | طرق أخرى للتقييم | 0 | المجموع | 100% |
|
|
8- قائمة الكتب الدراسية والمراجع |
| م | العنصر | النوع |
---|
1 | Lecture Notes | | 2 | Elements of Abstract Algebra, by Dean | | 3 | Algebra, by Serge Lang. | | 4 | Abstract Algebra by John A. Beachy and William D. Blair | | 5 | John B. Fraleigh,A first cours in Abstract algebra, Addidon-Wesley | | 6 | R.B.J.T. Allenby, Rings, Filds and Groups an Introduction to Abstract algebra, Addison-Wesley | | 7 | http://joshua.smcvt.edu/linearalgebra/ | | 8 | http://www.math.unl.edu/~tshores1/linalgtext.html | | 9 | http://www.math.niu.edu/~beachy/aaol/ | |
|
|
9- مصفوفة المعارف والمهارات المستهدفة من المقرر الدراسي |
| م | المحتوى | أسبوع الدراسة |
---|
| What is a ring and all essential kinds of rings | | | Integral Domain and its properties | | | Unites, primes and irreducibles elements | | | Subrings and ideals. Prime and maximal | | | Factor rings and homomorphisms theorems. | | | extention of an integral domain to a field | | | Euclidean domain and its properties | | | Polynomials over a ring and oynomialsver a field | | | Prime and irreducible pol | | | Gauss theorem and Eisenstein’ criterion | | | Field Splitting fields extensions, | | | Finite fields and its properties. | | | extensions | | | Classification of extensions | |
|
|
اساتذة المادة: - |
| - مجدى حكيم أرمانيوس بخيت
|
رئيس مجلس القسم العلمى: - |
| أحمد حبيب محمد نجيب البسيونى |