الجامعة :جامعة المنصورة |
الكلية :كلية العلوم |
القسم :الرياضيات |
|
| 1- 1- بيانات المقرر :- |
| | الرمز الكودى: | 11318 | | اسم المقرر: | جبر مجرد (2) | | الفرقة: | ثالثة رياضيات | | عنوان البرنامج: | | | التخصص: | | | عدد الساعات: | نظري: | 4 | فصل: | 2 | عملى: | |
|
| 2- 2- أهداف المقرر :- |
| - The programme unit aims to introduce quotient structures and their connection with homomorphisms in the context of rings and then again in the context of groups; present further important examples of groups and rings and develop some of their properties with particular emphasis on polynomial rings, factorisation in rings and group actions. As a prerequisite to the advande course of algebra .
|
| 3- 3- نواتج التعلم المستهدفة للمقرر :- |
| |
| 4- 4- محتويات المقرر :- |
| | م | الموضوع | الأسبوع |
|---|
| 1 | What is a ring and all essential kinds of rings | | | 2 | Integral Domain and its properties | | | 3 | Unites, primes and irreducibles elements | | | 4 | Subrings and ideals. Prime and maximal | | | 5 | Factor rings and homomorphisms theorems. | | | 6 | extention of an integral domain to a field | | | 7 | Euclidean domain and its properties | | | 8 | Polynomials over a ring and oynomialsver a field | | | 9 | Prime and irreducible pol | | | 10 | Gauss theorem and Eisenstein’ criterion | | | 11 | Field Splitting fields extensions, | | | 12 | Finite fields and its properties. | | | 13 | extensions | | | 14 | Classification of extensions | |
|
|
| 5- 5- أساليب التعليم والتعلم :- |
| | م | الاسلوب |
|---|
| Lecturer with exercise sheets and solution sheets | | Tutorials in groups | | Using Internet facilities |
|
|
| 6- 6- أساليب التعليم والتعلم للطلاب ذوى القدرات المحدودة :- |
| - no
|
|
| 7- 7- تقويم الطلاب :- |
| - التوقيت |
| | م | الطريقة | الأسبوع |
|---|
| 1 | Oral exam | 14 | | 2 | Final exam | 16 |
|
| - توزيع الدرجات |
| | م | الطريقة | الدرجة |
|---|
| 1 | امتحان نصف الترم | 0 | | 2 | امتحان آخر الترم | 90 | | 3 | الامتحان الشفوى | 10 | | 4 | الامتحان العملى | 0 | | 5 | أعمال الترم | 0 | | 6 | طرق أخرى للتقييم | 0 | | المجموع | 100% |
|
|
| 8- 8- قائمة الكتب الدراسية والمراجع |
| | م | المراجع | النوع |
|---|
| 1 | Lecture Notes | | | 2 | Elements of Abstract Algebra, by Dean | | | 3 | Algebra, by Serge Lang. | | | 4 | Abstract Algebra by John A. Beachy and William D. Blair | | | 5 | John B. Fraleigh,A first cours in Abstract algebra, Addidon-Wesley | | | 6 | R.B.J.T. Allenby, Rings, Filds and Groups an Introduction to Abstract algebra, Addison-Wesley | | | 7 | http://joshua.smcvt.edu/linearalgebra/ | | | 8 | http://www.math.unl.edu/~tshores1/linalgtext.html | | | 9 | http://www.math.niu.edu/~beachy/aaol/ | |
|
|
| 9- 9- مصفوفة المعارف والمهارات المستهدفة من المقرر الدراسي |
| | م | المحتوى | أسبوع الدراسة |
|---|
| What is a ring and all essential kinds of rings | | | Integral Domain and its properties | | | Unites, primes and irreducibles elements | | | Subrings and ideals. Prime and maximal | | | Factor rings and homomorphisms theorems. | | | extention of an integral domain to a field | | | Euclidean domain and its properties | | | Polynomials over a ring and oynomialsver a field | | | Prime and irreducible pol | | | Gauss theorem and Eisenstein’ criterion | | | Field Splitting fields extensions, | | | Finite fields and its properties. | | | extensions | | | Classification of extensions | |
|
|
| اساتذة المادة: - |
| - مجدى حكيم أرمانيوس بخيت
|
| رئيس مجلس القسم العلمى: - |
| أحمد حبيب محمد نجيب البسيونى |