كلية العلوم

نموذج رقم(12)

توصيف مقرر دراسي : توبولوجى (1)

2010 - 2011

 
الفارابى لإدارة جودة التعليم والتعلم - 22/12/2024
الجامعة :جامعة المنصورة
الكلية :كلية العلوم
القسم :
1- بيانات المقرر :-
الرمز الكودى: 11303
اسم المقرر: توبولوجى (1)
الفرقة: ثالثة رياضيات
عنوان البرنامج:
  • Mathematics
التخصص:
عدد الساعات: نظري: 3فصل: 1عملى:
2- أهداف المقرر :-
  1. To provide an introduction to the idea of point-set topology
3- نواتج التعلم المستهدفة للمقرر :-
4- محتويات المقرر :-
مالموضوعالأسبوع
1? Basic Constructions.Metric spaces: Definition and examples. Open sets and neighbourhoods. Introduction to topological spaces: From the general notion of the distance in the theory of metric spaces to the definition of topological spaces, examples, open sets, and closed sets
2? Operations on topological spaces: Neighbourhood systems, bases and subbases. Interior, closure, derived set.
3? Continuity: Continuous mapping, open mapping, closed mapping, homeomorphisms, topological and non-topological properties.
4Separation axioms
5? Building new spaces from old: Subspace, quotient by equivalence relations and product topologies.
6? Compactness: Definition using open covers, examples, closed subsets of compact spaces, compact subsets of a Hausdorff space, the compact subsets of the real line, continuous images of compact sets, . Quotient spaces and the product of two compact spaces.

5- أساليب التعليم والتعلم :-
مالاسلوب
Three hours lecture weekly with exercise sheets and solution sheets
Weekly one hour tutorials in groups
Using Internet facilities

6- أساليب التعليم والتعلم للطلاب ذوى القدرات المحدودة :-
  1. Science students are usually normal. Therefore, no specific teaching and learning methods are needed.

7- تقويم الطلاب :-
أ- التوقيت
مالطريقةالأسبوع
1Oral exam14
2Final exam15
ب- توزيع الدرجات
مالطريقةالدرجة
1امتحان نصف الترم0
2امتحان آخر الترم90
3الامتحان الشفوى10
4الامتحان العملى0
5أعمال الترم0
6طرق أخرى للتقييم0
المجموع100%

8- قائمة الكتب الدراسية والمراجع
مالعنصرالنوع
1Lipschutz, S. General Topology, Schaum`s outline series.
2James R. Munkres, Topology, A First Course, Prentic Hall of India (1988)
3http://en.wikipedia.org/wiki/Topology
4K. D. Joshi, Introduction to General topology, New Delhi, Wiley Eastern Limited, 1983.
5W. J. Porvin, Foundation of General topology, New Yourk, Academic press 1965.
6H. Seifert and W. A. Threlfall, A texetbook of topology. New York, Academic press, 1980
7James R. Munkres, Topology, 2nd ed., Upper Saddle River, NJ: Prentice-Hall, 2000.

9- مصفوفة المعارف والمهارات المستهدفة من المقرر الدراسي
مالمحتوىأسبوع الدراسة
? Basic Constructions.Metric spaces: Definition and examples. Open sets and neighbourhoods. Introduction to topological spaces: From the general notion of the distance in the theory of metric spaces to the definition of topological spaces, examples, open sets, and closed sets
? Operations on topological spaces: Neighbourhood systems, bases and subbases. Interior, closure, derived set.
? Continuity: Continuous mapping, open mapping, closed mapping, homeomorphisms, topological and non-topological properties.
Separation axioms
? Building new spaces from old: Subspace, quotient by equivalence relations and product topologies.
? Compactness: Definition using open covers, examples, closed subsets of compact spaces, compact subsets of a Hausdorff space, the compact subsets of the real line, continuous images of compact sets, . Quotient spaces and the product of two compact spaces.

اساتذة المادة: -
  1. محمد السيد ابراهيم الشافعى
رئيس مجلس القسم العلمى: -
أحمد حبيب محمد نجيب البسيونى