الجامعة :جامعة المنصورة |
الكلية :كلية العلوم |
القسم : |
|
1- بيانات المقرر :- |
| الرمز الكودى: | 11303 | اسم المقرر: | توبولوجى (1) | الفرقة: | ثالثة رياضيات | عنوان البرنامج: | | التخصص: | | عدد الساعات: | نظري: | 3 | فصل: | 1 | عملى: | |
|
2- أهداف المقرر :- |
| - To provide an introduction to the idea of point-set topology
|
3- نواتج التعلم المستهدفة للمقرر :- |
| |
4- محتويات المقرر :- |
| م | الموضوع | الأسبوع |
---|
1 | ? Basic Constructions.Metric spaces: Definition and examples. Open sets and neighbourhoods. Introduction to topological spaces: From the general notion of the distance in the theory of metric spaces to the definition of topological spaces, examples, open sets, and closed sets | | 2 | ? Operations on topological spaces: Neighbourhood systems, bases and subbases. Interior, closure, derived set. | | 3 | ? Continuity: Continuous mapping, open mapping, closed mapping, homeomorphisms, topological and non-topological properties. | | 4 | Separation axioms | | 5 | ? Building new spaces from old: Subspace, quotient by equivalence relations and product topologies. | | 6 | ? Compactness: Definition using open covers, examples, closed subsets of compact spaces, compact subsets of a Hausdorff space, the compact subsets of the real line, continuous images of compact sets, . Quotient spaces and the product of two compact spaces. | |
|
|
5- أساليب التعليم والتعلم :- |
| م | الاسلوب |
---|
| Three hours lecture weekly with exercise sheets and solution sheets | | Weekly one hour tutorials in groups | | Using Internet facilities |
|
|
6- أساليب التعليم والتعلم للطلاب ذوى القدرات المحدودة :- |
| - Science students are usually normal. Therefore, no specific teaching and learning methods are needed.
|
|
7- تقويم الطلاب :- |
| أ- التوقيت |
| م | الطريقة | الأسبوع |
---|
1 | Oral exam | 14 | 2 | Final exam | 15 |
|
| ب- توزيع الدرجات |
| م | الطريقة | الدرجة |
---|
1 | امتحان نصف الترم | 0 | 2 | امتحان آخر الترم | 90 | 3 | الامتحان الشفوى | 10 | 4 | الامتحان العملى | 0 | 5 | أعمال الترم | 0 | 6 | طرق أخرى للتقييم | 0 | المجموع | 100% |
|
|
8- قائمة الكتب الدراسية والمراجع |
| م | العنصر | النوع |
---|
1 | Lipschutz, S. General Topology, Schaum`s outline series. | | 2 | James R. Munkres, Topology, A First Course, Prentic Hall of India (1988) | | 3 | http://en.wikipedia.org/wiki/Topology | | 4 | K. D. Joshi, Introduction to General topology, New Delhi, Wiley Eastern Limited, 1983. | | 5 | W. J. Porvin, Foundation of General topology, New Yourk, Academic press 1965. | | 6 | H. Seifert and W. A. Threlfall, A texetbook of topology. New York, Academic press, 1980 | | 7 | James R. Munkres, Topology, 2nd ed., Upper Saddle River, NJ: Prentice-Hall, 2000. | |
|
|
9- مصفوفة المعارف والمهارات المستهدفة من المقرر الدراسي |
| م | المحتوى | أسبوع الدراسة |
---|
| ? Basic Constructions.Metric spaces: Definition and examples. Open sets and neighbourhoods. Introduction to topological spaces: From the general notion of the distance in the theory of metric spaces to the definition of topological spaces, examples, open sets, and closed sets | | | ? Operations on topological spaces: Neighbourhood systems, bases and subbases. Interior, closure, derived set. | | | ? Continuity: Continuous mapping, open mapping, closed mapping, homeomorphisms, topological and non-topological properties. | | | Separation axioms | | | ? Building new spaces from old: Subspace, quotient by equivalence relations and product topologies. | | | ? Compactness: Definition using open covers, examples, closed subsets of compact spaces, compact subsets of a Hausdorff space, the compact subsets of the real line, continuous images of compact sets, . Quotient spaces and the product of two compact spaces. | |
|
|
اساتذة المادة: - |
| - محمد السيد ابراهيم الشافعى
|
رئيس مجلس القسم العلمى: - |
| أحمد حبيب محمد نجيب البسيونى |